
1

EEE/INSTR F313
Analog and Digital VLSI Design

8-bit parity checker

8-Bit Parity checker at 1GHz with load capacitance of 1pF

NAME OF STUDENT I.D. NUMBER

Hariharan Venkat 2019A3PS0244P

Sashank Krishna S 2019A8PS0184P

Anirudh Subramanian 2019A3PS0274P

Submitted to Dr. Anu Gupta

2

INDEX

Problem 1
● Introduction
● Gate Level Circuit
● Gate Level Design
● Designed Circuits

○ DSCH
○ Microwind

● Problem Space

Problem 2
● Verilog model

Appendix

3

Introduction
In digital communication , a parity bit is added to the word of data as a means of detecting random bit
flips due to noise. The redundancy allows the receiver to check if everything tallies, and gauge whether or
not an error occurred. The receiver counts the number of highs (1s) in the transmitted signal and if it does
not equal the parity bit , there is an error in the transmission. Similarly, parity-based techniques are also
widely employed in memory technology as well. For implementing such a scheme, hardware is required.
The problem statement addressed in this section, is the design of such a circuit.

There are many ways to implement this . The XOR operation intrinsically performs a parity check. Hence,
we usually use XOR gates for creating an 8-bit parity checker. Due to the nature of XOR gates there are
multiple ways in which such a parity checker can be implemented , depending on the flexibility an XOR
gate provides - such as varying the number of inputs of the gate, the number of levels, and the manner in
which the gate itself is implemented.

Hence, we decoupled the problem statement as follows:
1. Selecting the number, and fan in of the XOR gates, and designing the circuit using the same
2. Deciding which XOR gate topology to use
3. Designing the unit inverter, the components of the XOR gate, and finally the XOR gate itself
4. Designing the full circuit, and translating it into a layout.

Step 1: Deciding number and fan in of XOR gates
Increasing the number of inputs of an XOR gate exponentially increases the number of transistors
required. Even moving from 2 inputs to 3 would raise the number to more than double the original
number. Hence we opted for the design shown below as it is simple and quite well optimized, and hence,
serves our purpose.

An 8-bit parity checker (Implemented in DSCH)

4

Step 2: XOR gate topology selection

Candidate 1: The typical implementation (12 transistors)

This is the naive implementation of the XOR gate. As complement inputs are not assumed to be at our
disposal, we accounted for complementing them using a standard CMOS inverter (2 transistors per input)
and calculated a total of 12 transistors. The implementation had a higher output capacitance at the output
node as there are 4 transistors connected directly to it.

Candidate 2: NAND Implementation (20 transistors)

This is another comparatively naive implementation with 16 transistors. The two NAND gates in the first
stage are performing an inverter’s functions. This circuit is relatively easier to implement as compared to
the previous one and has a lesser output capacitance.

Candidate 3: PTL Implementation (6 transistors)

5

This implementation allows for a drastic reduction in the number of transistors required at each stage at
the cost of deterioration of the output voltage levels. However, since we could not figure out how to
compute the logical effort for such topologies, we were unable to optimize this method properly.

Candidate 4: 3 Transistor Implementation

This implementation was found during literature review. It consists of just 3 transistors and reduces our
transistor count manyfold. However, the simple implementation of the circuit does not properly act as an
XOR gate. The W values needed to be fine-tuned to obtain the needed XOR functionality[CHECK THE
REFERENCE PAGE NO.], we were unable to get the topology to work, and hence did not use this
method.

Candidate 5: Modified NAND implementation (16 transistors)

This is similar to the candidate 3 topology but the first stage NAND gates are replaced with
inverters which allows for a reduced transistor number while maintaining the simplicity of the
topology. It was this topology which was chosen for this project.

6

Gate Level Circuit
As mentioned above, the plan for creating the 8-bit parity checker is straightforward. We create
the XOR gate and then cascade them as shown above to achieve the required functionality. Our
first step of creating the XOR gate involves using a NAND gate and an inverter as well. As
mentioned above, candidate topology 5 (INSERT FIGURE NO) was chosen for this project. We
will now see the design of the inverter, the nand gate and then the XOR gate, mentioning the
caveats and the thought processes employed along the way.

1. Inverter Design
The first step in the design was to design an inverter of equal charge and discharge

cycles. Since our technology node was fixed at 180nm ,the lengths of both transistors were
taken as Lmin while the widths were varied (in accordance to the standard design rules).
Equality of charge and discharge cycles was determined by examining the simulations and the
difference between the tplh and tphl values.

After trial and error and checking many different W values, the closest to an
optimal solution came at Wn = 6λ and Wp = 8λ. The below images show the CMOS
Inverter design at the transistor level and the layout levels. One important thing we learnt
from making this layout was the importance of grounding the N and P wells as well. We
have highlighted those contacts, as well as the measured Wp and Wn values in the
layout diagram given below. Since λ = 90nm, Wp = 8λ = 720 nm and Wn = 540 nm.

CMOS implementation of a Inverter in DSCH

7

Inverter Layout (Note the Well to ground contacts and the Wn and Wp values)

On using the above mentioned Wn and Wp values, we simulated the circuit on MicroWind to
test the results. We observed a tphl = 10 ps and tplh = 9 ps on no load. This was however, the
most optimal result we could achieve as getting them exactly equal was not possible. The graph
below summarizes the results.

Later, we went on to realize that not using a load here was a major blunder.

8

Inverter Output v/s time graph of input clock (green) and output waveform (red) illustrating the
rise and fall times (MicroWind)

With that, we concluded the design of our unit inverter. Note that the inverter was designed
using the level 3 mosfet model, since microwind 3 did not allow us to use the BSIM4 model. At a
later stage, we had switched to using microwind 2, when we heard that it had superior features.
Time did not permit us to switch to the BSIM4 model, since it would require the redesigning of
the inverter, as well as the NAND and XOR that was designed at that point.

9

2. NAND Design
The next step we took towards the completion of our assignment was the design of the

nand gate. We used the typical CMOS logic to design the NAND with two PMOS transistors in
parallel connected to 2 series NMOS transistors. The Wp and Wn values were selected so as to
retain the same proportions as that of the unit inverter designed earlier.

CMOS implementation of NAND Gate (DSCH)

10

NAND Layout

NAND Inputs A & B (green and white) and Output waveform (AB)’ (red) v/s time

11

3. XOR Design
Now that the inverter and NAND gate have been implemented, we can now put them

together as shown in figure (NAME OF FIGURE). Once again, the Wp and Wn values of each
transistor have been kept as per those inferred from the inverter design.

Before we proceed further, however , we must elaborate upon the various other XOR layouts
that we considered, and how we finally arrived at the below model that we used in the final
design-

XOR in CMOS Logic (DSCH)

We chose the XOR design with the intent of minimizing the number of transistors while still
retaining it’s functionality . Below are the configurations we considered -

12

Process View of XOR in 3d (Microwind)

XOR Layout

13

Inputs (Green and White) and Output (Red) v/s time

4. Parity Checker Design
Once the individual XOR gate was designed, all that was left was for us to cascade the gates as
shown in fig [INSERT FIGNO]. Figure [INSERT FIG NO] shows the final layout of the 8 bit parity
checker we created.

14

FInal layout of the 8 bit parity checker. (Design rule verification highlighted in red)

We then ran the simulations to observe the delays involved in the process. Critical to note here
is the effect of the load capacitance. Our circuit was not able to drive the 1 pF load capacitance
given in the question. We found that 0.12 pF was the maximum allowable load capacitance for
valid output.

15

Output Voltage vs Time for the 8 bit parity checker (Load Capacitance = 0)

Output Voltage vs TIme for the 8 bit parity checker (Load Capacitance = 0.12 pF)

16

Design Specifications
Given below are the specifications of the design submitted. The specifications of the inverter,
the NAND gate, and the logical effort calculations for the failed design can be found in the
appendix.

17

Challenges faced
In this section, we elucidate the various design challenges encountered when completing this assignment.
While these hurdles seemed too hard to overcome at the start, it allowed us to find better and more
efficient solutions.

1. Extraction of the capacitances of the unit inverter circuit designed on Microwind:
On using the electrical node analyzer feature that microwind provided us with, a number in low
fermiFarads. For this reason, to drive a 1pF load, the logical method approach required us to use
gates that are sized 243 times larger than a unit inverter. The width of the transistor required
approached 0.5mm, which is an extraordinarily high value for a single 180 nm node transistor.
Since we were unable to ascertain the source of this error, and since we did not understand
exactly which value microwind provided us with, we had to alter the capacitive load, and
implement a circuit with all the XOR gates used being identical.

2. Driving the 1pF load: Due to the extreme results we obtained from our logical effort
calculations, we were unable to realize the optimal version of our circuit. We realized too late that
had we sized our unit inverter larger, our logical effort calculations would have gotten us
acceptable transistor sizes.

3. Fitting the 6 transistor XOR into the logical effort model: When attempting to
implement the aforementioned PTL-based XOR circuit, we were unable to describe the same
properly using the logical effort scheme. Since a transmission gate was used, the inputs were also
fed into the source/drain of the transistors, and we were unfamiliar with how to model the same
using the logical effort scheme.

4. Simulating large circuits on DSCH: When we tried to simulate our final 8 bit parity checker
on DSCH, the software was unable to handle the complexity of the circuit. Initially, we tried
using the CMOS implementation, where 1 XOR gate used 16 transistors. Using the 8 XORs to
achieve the design we planned involved 128 transistors. When creating the circuit on DSCH, an
error “Too many lines'' was thrown and hampered us from proceeding further. Even when we
tried to switch to the PTL-based XOR implementation which consisted of 6 transistors per XOR,
the same problem was encountered.

A screenshot showing the error message displayed by the DSCH software

18

Despite our best attempts at self-studying, an overwhelming number of slip-ups and unknowns survived
till the last minute, and could not be addressed in our designs. However, we have listed the same
throughout this report. The biggest constraint faced was hence the design time limitation.

Innovations:
1. Layout:

a. Multi-fingered transistors were used in place of a series connection of 2
transistors.

b. The 4 stages were packaged into a single rectangle by rearranging the stages
efficiently.

c. The routing was done such that only 2 metal layers were required.

19

Problem 2:
The verilog code for the module designed:

module flipregister (pos, en, clk, op);
input [0:2] pos;
input en;
input clk;

reg [7:0] flip;

output [0:7] op;
reg [0:7] op;

always @(pos) begin
case(pos)

3'b000: begin flip = 8'b00000001; end
3'b001: begin flip = 8'b00000010; end
3'b010: begin flip = 8'b00000100; end
3'b011: begin flip = 8'b00001000; end
3'b100: begin flip = 8'b00010000; end
3'b101: begin flip = 8'b00100000; end
3'b110: begin flip = 8'b01000000; end
3'b111: begin flip = 8'b10000000; end

endcase
end

always @(posedge clk)
if (en)

op = op ^ flip;
else

op = op;
endmodule

20

References
1. “Parity Generator and Parity Check” - Electronics Hub .

https://www.electronicshub.org/parity-generator-and-parity-check/
2. I.E. Sutherland & Bob. F. Sproull., “Logical effort: Designing fast CMOS circuits, Advanced

research in VLSI”, Morgan Kaufmanns Publishers, 1999.
3. I.E. Sutherland and R.F. Sproull, “Logical Effort: Designing for Speed on the Back of an

Envelope”, in C.H. Sequin, Ed., Advanced Research in VLSI. Cambridge, MA: MIT Press, 1991.
4. New Efficient Design for XOR Function on the Transistor Level , AIP Conference Proceedings

1324, 346 (2010), Tripti Sharma, K. G. Sharma, B. P. Singh, and Neha Arora -
https://doi.org/10.1063/1.3526229

5. Hardware Modelling using Verilog , NPTEL - Hardware Modeling using Verilog - YouTube
6. Logical effort : ElectronTube - YouTube

https://www.electronicshub.org/parity-generator-and-parity-check/
https://doi.org/10.1063/1.3526229
https://www.youtube.com/playlist?list=PLJ5C_6qdAvBELELTSPgzYkQg3HgclQh-5
https://www.youtube.com/playlist?list=PLyWAP9QBe16rIlXzRlepfK7zwnIGkI6TB

21

Appendix

Inverter Specifications:

NAND Specifications:

Logical Effort Calculation (Chain):

22

K value calculations:

K = how many unit inverters the circuit corresponds to sizing wise.

Overall Circuit Specifications:

